The Salton Sea

Update
State Salton Sea Advisory Committee

April 27, 2004

Caveats

- DRAFT report
- Outdoor Recreation Task Force Input
- Congressional, Other Input
- Scientific, Technical Input
- CEQA Steps to Follow
- How Fits w/i State Process
- REPORT: www.saltonsea.ca.gov

Outline

- Background
- Preferred Project
 - Concept Review
 - Technical Feasibility
 - Cost Estimates
 - Financing Strategy
 - Phasing Strategy
- Next Steps
 - Substance
 - Process

Outline

- Background
- Preferred Project
 - Concept Review
 - Technical Feasibility
 - Cost Estimates
 - Financing Strategy
 - Phasing Strategy
- Next Steps
 - Substance
 - Process

Restoration Planning History

- Four decades of studies
- 1969 1974
 - Federal/State recon. investigation
 - Federal/State feasibility report
- 1993 Salton Sea Authority formed
- 1996 Alternatives report
 - 54 alternatives considered
 - Evaluation Criteria Developed/Ranked
- **1998 Salton Sea Restoration Act**

Recent Planning History

- **2000**
 - Pre-appraisal alternatives report (39 alts)
 - Draft EIS (6 alts)
 - Strategic Science Plan
- NEPA/CEQA
 - Programmatic Draft EIS/EIR, 2000

Recent Planning History

- **2001 2003**
 - Alternative refinement
 - Assessment of possible reduced inflows
- January 2003
 - Department of Interior Status Report (6 salinity alts & 3 salinity and elevation alts)

Background

- 40 Years of Studies
- Frustration-No "Preferred Project"
- One Year Ago:
 - Get In Driver's Seat
 - Reviewed Transfer/Smaller Sea Solutions

Why Smaller Sea Concepts?

Why Smaller Sea Concepts?

A. Water Transfers

Elevation Trend: No Action

Exposed Sediments

Proposed Project (300KAFY) - Visual Simulation at Salton Sea Beach (water level at -250 ft msl)

The conceptual visual simulations show the Salton Sea in the year 2077. Data sources: University of Redlands, 1999; DOI, 1999; Reclamation, 1999.

Figure 3.11-5a
Visual Simulations
IID Water Conservation
and Transfer Project
Draft ERVEIS

Proposed Project (300KAFY) - Visual Simulation at Red Hill Marina County Park (water level at -250 ft msl)

The conceptual visual simulations show the Salton Sea in the year 2077. Data sources: University of Redlands, 1999; DOI, 1999; Reclamation, 1999.

Figure 3.11-5d
Visual Simulations
IID Water Conservation
and Transfer Project
Draft EIRJEIS

CH2MHILL

Proposed Project (300KAFY) - Visual Simulation at Bombay Beach (water level at -250 ft msl)

The conceptual visual simulations show the Salton Sea in the year 2077. Data sources: University of Redlands, 1999; DOI, 1999; Reclamation, 1999.

Figure 3.11-5g
Visual Simulations
IID Water Conservation
and Transfer Project
Draft ERRIES

CH2MHILL

Proposed Project (300KAFY) - Conceptual Visual Simulation at Sneaker Beach (water level at -250 ft msl)

The conceptual visual simulations show the Salton Sea in the year 2077. Data sources: University of Redlands, 1999; DOI, 1999; Reclamation, 1999.

Figure 3.11-5j
Visual Simulations
IID Water Conservation
and Transfer Project
Draft EIR/EIS

CH2MHILL

"Old" Salinity Trend

"New" Salinity Trend

Impacts

- Biological
 - Speeding decline
- Air Quality
 - PM 10
 - Odors

Outline

- Background
- Preferred Project
 - Concept Review
 - Technical Feasibility
 - Cost Estimates
 - Financing Strategy
 - Phasing Strategy
- Next Steps
 - Substance
 - Process

Goals & Objectives

- Goals From Extensive Public Input & Federal Law:
 - Ag Repository
 - Reduce Salinity
 - Stabilize Elevation
 - Create Healthy Fish Wildlife Habitat
 - Enhance Economic & Recreation Potential

Goals & Objectives

- Objectives (Used as Eval Criteria)
 - Ag Repository
 - Provide Large Marine Lake w/ Stable Elevation
 - Improve Water Quality-Salinity
 - Improve Water Quality-Nutrients
 - Maintain and Improve Habitat
 - Achieve Water Quality/Habitat Objectives Quickly
 - Respond to Inflow Changes
 - Increase Recreation & Economic Potential
 - Address Air Quality Issues
 - Provide High Safety Rating/Low Risk of Failure
 - Overcome Institutional/Permitting Barriers
 - Reasonable Cost/High Probability of Financing

How to Restore?

Many Reached the Same Conclusion:

How to Restore?

Make Sea Smaller

Congressional, Public Interest

- Congresswoman Mary Bono, Others
 - Interesting Ideas, How to Improve Them?

What is the Most Cost Effective & Best Way To Make Sea Smaller?

- Evaluated 4 Concepts
 - North Lake, w/ Elevation Control
 - South Lake, w/ Elevation Control
 - South Lake, w/o Elevation Control
 - No Deep Water Fishery

Which Side for Deep Water Lake?

Selenium

0.7 mg/kg (ERL) 0 mg/kg

Selenium - 5 mg/kg (ERM) - 1.4 mg/kg (ERM) - 0.7 mg/kg (ERL) 0 mg/kg

The Concept

Salton Seachematic Design Concept

Concept Plan

Recreation Lake

Lake Red Hill

Lake Red Hill

Geothermal Expansion

Hunting/Fishing Expansion

Park Views

Development

Shallow Wetlands

Outline

- Background
- Preferred Project
 - Concept Review
 - **Technical Feasibility**
 - Cost Estimates
 - Financing Strategy
 - Phasing Strategy
- Next Steps
 - Substance
 - Process

How to Build Dikes in Difficult Conditions

- Weak Foundation Soils
- Underwater Construction
- High Seismicity

Geotechnical Investigation

Latest Engineering...

- Yes, Difficult Conditions
- But, Done It Before
 - Great Salt Lake Causeways
 - Pacific Rim Harbors & Reclamations

Technical Feasibility

- Engineering Workshop
- Refined Previous Concepts
- Developed New Concepts
- Eliminated Concepts with Fatal
 Flaws: Dredged Fill Embankments

Feasible Concepts

- Conventional Dam Built in Dry
- Sheet Pile Cofferdams
- Rockfill Dams
- Precast Concrete Caissons

Conceptual Designs

Benefits

- Provides Separation of Waters/Levels
- Seismically Resilient
- Conventional Marine Construction

Drawbacks

- Massive Material Requirements
- Difficult Site Conditions
- Unconventional for Dam Construction

Rockfill Concept

Benefits

- Lowest Estimated Costs
- Precedence for Underwater Construction
- Low Seismic Deformation Potential

Drawbacks

- Requires Large Quantity of Imported Rock
- Seepage Barrier will be Required

Rockfill Concept

Outline

- Background
- Preferred Project
 - Concept Review
 - Technical Feasibility
 - Elevation Considerations
 - Cost Estimates
 - Financing Strategy
 - Phasing Strategy
- Next Steps
 - Substance
 - Process

Costs Sensitive to Elevation

Cost Savings vs. Elevation

How Low to Go?

At Least to -235

■ Early 1960's Level

Get Water Flowing North

Lower?

Target Elevation

Target Elevation

- At -235
 - Salinity Doesn't Rise Past 50 ppt
 - Achieve Targets w/i 10 years
 - Save Over \$150M, Less Dredging
- At -240
 - Salinity Rises to 60 ppt
 - Achieve Targets w/l 17 years
 - Dike Costs Less, Dredging More
- Any Lower (barriers) Challenging

Target Elevation

- Proposing -235
 - Basis for Cost Estimates
 - But... Other Factors Could Suggest Fine-Tuning Later

Cost Summary

Construction Cost Estimate for Preferred Project (\$M)

<u>ltem</u>	El=-235' msl
Mid-Sea Retention Structure/Causeway	527
Greenbelt Channels to North Lake	69
Recreational Features	51
Wetlands	78
Shallow Habitat Initial 2,000 ac	8
Total Construction Costs	<u>\$730</u>

O&M Cost Summary

O&M Cost Estimate for Preferred Project (\$M/yr)

<u>Item</u>	El=-235' msl
Causeway O&M	5
Add Shallow Habitat (500-1,000 ac/	yr) 2
Wetland O&M	1
Total Annual O&M (\$M/yr)	<u>\$8</u>

Outline

- Background
- Preferred Project
 - Concept Review
 - Technical Feasibility
 - **■** Elevation Considerations
 - Cost Estimates
 - Financing Strategy
 - Phasing Strategy
- Next Steps
 - Substance
 - Process

Financing

- **Prop 50**
- **Water Transfer**
- **Tax Increment**
- **■** State/Fed

Financing

SSA Tax Increment

- Economic Task Force
 - Led to State Legislation
 - Infrastructure Finance Districts
- IFDs
 - As Values Increase, so do Tax Receipts
 - "Voluntary"
 - No New Taxes
- Latest
 - SSA Increased Boundaries
- Economic Development-Environmental Benefits

Outline

- Background
- Preferred Project
 - Concept Review
 - Technical Feasibility
 - **■** Elevation Considerations
 - Cost Estimates
 - Financing Strategy
 - Phasing Strategy
- Next Steps
 - Substance
 - Process

Salton Sea Anthority

Target Salinity

PERFORMANCE

- Nutrients Significantly Reduced
 - Still Need to Model

Outline

- Background
- Preferred Project
 - Concept Review
 - Technical Feasibility
 - **■** Elevation Considerations
 - Cost Estimates
 - Financing Strategy
 - Phasing Strategy
- Next Steps
 - Substance
 - Process

Input

- Outdoor Recreation Task Force Input by June
- Other Input
 - **CVEP & IVEDC**
 - Economic Benefits
- Technical Reports, Next 30 Days
 - Engineering, Shallow Water Workshop, Modeling

Outline

- Background
- Preferred Project
 - Concept Review
 - Technical Feasibility
 - **■** Elevation Considerations
 - Cost Estimates
 - Financing Strategy
 - Phasing Strategy
- Next Steps
 - Substance
 - Process

- MOU Between Feds, State, Local
 - Align Goals
 - **■Work Together**
- Local Tax Increment
 - Negotiations This Summer

Questions?

